论文部分内容阅读
在评析目前时空预测研究现状的基础上,提出基于动态回归神经网络(DRNN)和自回归集成移动平均(ARIMA)组合模型的时空集成预测方法.该方法先用ARIMA模型对时空数据的时序进行预测,再用DRNN捕获时空数据间隐藏的空间关系,最后用线性回归将二者整合起来,得到集成预测结果.案例实验结果表明:该方法比不考虑空间影响的预测方法或单一的预测方法有更高的精度 该方法具有良好的动态处理和计算能力,对跨空间的动态过程的预测有效可行.