论文部分内容阅读
随着物联网的兴起、电子商务的蓬勃发展,依据图像特征对商品进行有效检索和分类具有重要应用价值.针对传统图像分类方法提取特征复杂,浅层卷积神经网络分类效果不佳的问题.本文对经典的AlexNet进行改进,优化了卷积核的尺寸,改变了各层连接,提出了一种分类效果更好的卷积神经网络结构.通过对8种商品进行测试训练,本文网络的分类准确率达到了91.2%,分类结果明显高于AlexNet的85.9%.