论文部分内容阅读
目的
提出一种基于多尺度卷积神经网络(CNN)的眼底图像病灶检测算法,并探讨其在糖尿病视网膜病变(DR)中的应用。
方法对比现有眼底病灶检测方法,提出一种基于CNN的眼底图像病灶检测算法。本算法不仅克服了基于阈值分割和形态学分割方法鲁棒性差的问题,同时在不依赖人工逐像素标注的前提下,采用多尺度图像块的检测思路,显著提升检测器对小病灶目标检测的性能。此外,提出的新型损失函数在弱标签、小数据集的条件下,实现多类型、高准确率的DR病灶检测。
结果从病灶水平来看,该算法对硬性渗出病灶检测的敏感性和特异性分别为92.17%和97.17%;相较于单尺度方法,本研究中提出的多尺度方法的敏感性和准确率分别提升了7.41%和5.02%;在公开数据集IDRiD上较其他检测方法特异性提高了55.82%。本方法能够将眼底图像中的病变有效地检测出来,且能够给出病灶的基本范围,对于有大量病灶眼底图像的平均检测时间为1.59 s。
结论基于多尺度CNN的眼底图像病灶检测算法能够快速、可靠地识别出眼底图像中的DR病灶并标注出病灶的位置信息,降低主观因素的影响,辅助临床医生更加高效、准确地进行DR病变筛查。