论文部分内容阅读
This paper presents eight-node solid-shell elements for geometric non-linear analyze of piezoelectric structures. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. With the generalized stresses arising from the modified generalized laminate stiffness matrix assumed to be independent from the ones obtained from the displacement, an extended Hellinger-Reissner functional can be derived. By choosing the assumed generalized stresses similar to the assumed stresses of a previous solid ele- ment, a hybrid-stress solid-shell element is formulated. The presented finite shell element is able to model arbitrary curved shell structures. Non-linear numerical examples demonstrate the ability of the proposed model to analyze nonlinear piezoelectric devices.
This paper presents eight-node solid-shell elements for geometric non-linear analyze of piezoelectric structures. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. arising from the modified generalized laminated stiffness matrix assumed to be independent from the firstrized from the displacement, an extended Hellinger-Reissner functional can be derived. The presented finite shell element is able to model arbitrary curved shell structures. Non-linear numerical examples demonstrate the ability of the proposed model to analyze nonlinear piezoelectric devices.