论文部分内容阅读
特征选择是机器学习的重要研究内容之一.相对于低维数据的特征选择而言,高维数据的特征选择更具挑战性,尤其是高维小样本的特征选择问题,因而吸引很多研究者的关注.高维特征选择问题称为稀疏建模问题,其目标是解决现有特征建模方法在高维特征空间失效的问题.本文对高维数据的特征选择研究成果进行了相应的总结和展望.