论文部分内容阅读
电力设备作为电力系统的基本要素,其运行状态对电网的安全经济运行有直接影响.随着电力物联网的建设和智能传感器技术的不断发展,电力设备运行状态的相关信息呈现出多源、异构的数据特征.研究以海量多源异构数据为驱动的基于人工智能技术的设备状态分析方法,对于全面、及时、准确地掌握电力设备运行状态及其发展趋势有重要意义.论文首先介绍了基于数据驱动的新一代人工智能技术;然后,以当前电力设备状态数据所呈现的海量、多源异构的特性为出发点,针对图像、文本、时序这3种数据类型综述了基于人工智能的电力设备状态特征提取技术;其次,通过研究当前电力设备状态分析的总体需求,总结和讨论了数据驱动的人工智能技术在电力设备智能巡检、故障诊断、状态预测等典型业务场景中的应用研究现状;最后,探讨了现阶段数据驱动的人工智能技术在电力设备状态分析中面临的挑战性问题,并对相关技术的发展趋势进行了展望.