论文部分内容阅读
在工程应用中,如数据挖掘、成本预测以及风险预测等,Logistic回归是一类十分重要的预测方法.当前,大部分Logistic回归方法都是基于优化准则而设计,这类回归方法具有参数调试过程繁琐、模型解释性差、估计子没有置信区间等缺点.本文从Bayes概率角度研究Logistic组稀疏性回归的建模与推断问题.具体来说,首先利用高斯-方差混合公式提出Logistic组稀疏回归的Bayes概率模型;其次,通过变分Bayes方法设计出一个高效的推断算法.在模拟数据上的实验结果表明,本文所提出的方法具有较好的预测性能.