论文部分内容阅读
由于庞大的训练语料,统计语言模型的大小往往会超出手持设备的存储能力。随着现阶段资源受限设备的迅速发展,语言模型的压缩研究也就显得更加重要。本文提出了一个语言模型压缩方法,即将次数剪切与规则剪枝方法相结合,并使用分组的方法保证在不减少单元数目的情况下压缩模型。文章对使用新的算法得到的语言模型与次数剪切和规则剪枝方法分别进行困惑度比较。实验结果表明,使用新方法得到的语言模型性能更好。