论文部分内容阅读
采用Mamdani模型作为模糊分类器 ,利用神经网络建立非线性模型 ,构造一种分布式神经网络。采用多组样本数据建模 ,根据各输入模糊子集和隶属度函数 ,将输入样本空间模糊分割成多个子空间 ,对每个子空间用一个神经网络模型建立映射关系。对每一组输入向量在确定归属类后 ,自动切换至对应的子网络作为输入 ,该子网络的输出值则作为分布式网络的输出。仿真结果表明 ,该方法与用单个神经元网络相比 ,明显提高了模型的精度和泛化能力。