论文部分内容阅读
The climatological mean state,seasonal variation and long-term upward trend of 1979–2005 latent heat flux(LHF) in historical runs of 14 coupled general circulation models from CMIP5(Coupled Model Intercomparison Project Phase 5) are evaluated against OAFlux(Objectively Analyzed air–sea Fluxes) data. Inter-model diversity of these models in simulating the annual mean climatological LHF is discussed. Results show that the models can capture the climatological LHF fairly well,but the amplitudes are generally overestimated. Model-simulated seasonal variations of LHF match well with observations with overestimated amplitudes. The possible origins of these biases are wind speed biases in the CMIP5 models. Inter-model diversity analysis shows that the overall stronger or weaker LHF over the tropical and subtropical Pacific region,and the meridional variability of LHF,are the two most notable diversities of the CMIP5 models. Regression analysis indicates that the inter-model diversity may come from the diversity of simulated SST and near-surface atmospheric specific humidity.Comparing the observed long-term upward trend,the trends of LHF and wind speed are largely underestimated,while trends of SST and air specific humidity are grossly overestimated,which may be the origins of the model biases in reproducing the trend of LHF.
The climatological mean state, seasonal variation and long-term upward trend of 1979-2005 latent heat flux (LHF) in historical runs of 14 coupled general circulation models from CMIP5 (Coupled Model Intercomparison Project Phase 5) are evaluated against OAFlux -sea Fluxes) data. Inter-model diversity of these models in simulating the annual mean climatological LHF is discussed. Results show that that models can capture the climatological LHF fairly well, but the amplitudes are generally overestimated. Model-simulated seasonal variations of LHF The well-established observations of overestimated amplitudes. These are origins of these biases are wind speed biases in the CMIP5 models. Inter-model diversity analysis shows that the overall stronger or weaker LHF over the tropical and subtropical Pacific regions, and the meridional variability of LHF , are the two most notable diversities of the CMIP5 models. Regression analysis indicates that the inter-model diversity may come from the diversity of simulated SST and near-surface atmospheric specific humidity. Comparing the observed long-term upward trend, the trends of LHF and wind speed are substantial underestimated, while trends of SST and air specific humidity are grossly overestimated, which may be the origins of the model biases in reproducing the trend of LHF.