论文部分内容阅读
高分辨距离像(HRRP)分类是对雷达复杂目标分类的一种重要方法。标准的一对一超球面SVM多值分类方法需要训练k(k-1)个子分类器,计算量大、训练时间长,并且存在决策盲区,不适宜用来进行HRRP目标识别。为了减少分类器数量,提高训练速度,文中根据超球面的几何特征引入了一种“倒数对称”的一维隶属度,构造了模糊超球面SVM分类器,该方法仅需训练k(k-1)/2个子分类器,既提高了训练速度又解决了决策盲区,HRRP实测数据识别实验表明了该方法的有效性。