论文部分内容阅读
面对人工标注大量样本费时费力,一些稀有类别样本难于获取等问题,零样本图像分类成为计算机视觉领域的一个研究热点。首先,对零样本学习,包括直推式零样本学习和归纳式零样本学习进行了简单介绍;其次,重点介绍了基于空间嵌入零样本图像分类方法和基于生成模型零样本图像分类方法以及它们的子类方法,并对这些方法的机制、优缺点和适用场景等进行了分析和总结;然后,简单介绍了零样本图像分类常用数据集和评估方法,并对典型零样本图像分类方法进行了性能比较;接着,指出了现有零样本图像分类中存在的领域漂移、枢纽点和语义鸿沟等问题及