数据驱动的车载空调设定温度预测研究

来源 :机械科学与技术 | 被引量 : 0次 | 上传用户:wangkaihao_2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了对用户期望的车载空调温度进行实时预测,本文提出了一种习惯温度预测模型和时间序列温度预测模型双模型耦合的方法对车载空调设定温度进行实时预测.该方法以车内和外界的多维度信息作为输入,通过过滤式和随机森林对特征进行筛选,并根据实际应用场景集成模型来对用户期望的空调设定温度进行预测.最后使用该模型对测试数据进行验证.结果表明本文提出的双模型耦合的方法对用户空调设定温度的预测结果平均绝对百分比误差(MAPE)为0.049,能够精确地对车载空调温度进行预测,从而为智能化、个性化调控空调提供辅助决策.
其他文献