论文部分内容阅读
在汽油机瞬态空燃比反馈控制过程中,氧传感器存在传输时滞,不能快速反馈汽油机瞬态空燃比真实值,无法满足瞬态空燃比反馈控制的实时性要求。文章提出了汽油机瞬态空燃比的混沌时序LS-SVM(最小二乘支持向量机)预测模型,采用相空间再构技术对原始数据进行重构,达到恢复汽油机瞬态空燃比时间序列的多维空间非线性特性目的,最后利用LS-SVM进行训练及预测,得到空燃比预测结果。仿真结果表明,与Elman网络及前馈BP网络相比,混沌时序LS-SVM预测模型具有更强的非线性预测能力,能够有效地提高瞬态空燃比的预测精度,为瞬态