目前市场上的建筑抗震支吊架部分零件为非标准件,存在种种不足。为此,选取了目前市面上具有代表性的3种建筑抗震支吊架产品,在分析零部件的外型尺寸、材料、力学特性的基础上,对比了建筑抗震支吊架的循环加载性能与疲劳性能,总结了建筑抗震支吊架存在的问题,并提出了改进的建议与展望。
以Ta粉、Al粉和炭黑粉为原料,利用自蔓延高温合成、无压烧结和放电等离子烧结组合工艺,成功制备了高纯Ta
2AlC块体陶瓷,研究了放电等离子烧结制备的Ta
2AlC块体的微观形貌与性能。制备的Ta
2AlC块体的硬度、弯曲强度和断裂韧性分别为5.6 GPa、510 MPa和6.16 MPa·m
1/2。放电等离子烧结工艺升温速率快、烧结时间短、制备的陶瓷晶粒细小,细晶强化效果明显,使得块体陶瓷有明显的高硬度和强度。Ta
为了研究碳化龄期对混凝土动态力学性能的影响,利用碳化试验箱对水泥砂浆试件环向圆周面进行0 d、3 d、7 d、14 d、28 d的碳化模拟,并采用直径Φ50 mm分离式Hopkinson压杆(SHPB)试验装置开展不同碳化龄期的水泥砂浆冲击压缩试验,得到了试件动态抗压强度、动态弹性模量、动态峰值应变和破碎块度与碳化龄期的关系。结果表明:由于碳化过程生成的CaCO3结晶充填水泥砂浆表面的孔隙形成碳化层,砂浆试件的动态抗压强度、动态弹性模量随着碳化龄期的延长而增加,从0 d到28 d,动
针对矿山超深井井壁混凝土受地下水硫酸盐腐蚀危害等问题,本研究采用硫酸钡沉淀法、NEL-PDU型氯离子扩散系数测定仪、扫描电镜(SEM)仪、X射线衍射(XRD)仪等手段,对比了硫酸盐干湿循环快速腐蚀环境下,C70仿钢纤维混凝土(C70-ISFRC)与高性能超深井井壁混凝土(HUC)的参数指标。实验结果表明:硫酸盐干湿循环快速腐蚀后,通过质量变化发现C70-ISFRC的孔隙数量、孔隙尺寸都高于HUC,并且两种混凝土力学性能的变化趋势均为先上升后下降,但HUC在此腐蚀环境下的力学性能表现更优;在硫酸盐干湿循环下
为了提高城轨车体用6005A-T6铝合金表面的耐磨能力,通过对其实施微弧氧化处理的方式制得高耐磨性薄膜,分析了负相电压参数引起的微弧氧化层结构特征、硬度及其耐磨性的变化。结果表明:6005A-T6铝合金经过微弧氧化后在薄膜内形成了γ相氧化铝。薄膜形成了明显火山状结构,整体表面较为粗糙,形成了许多尺寸差异较大的微米孔洞以及大量熔融颗粒。薄膜包含了内部致密组织以及外部相对疏松的结构,存在4μm的致密层组织。对铝合金实施微弧氧化可以使硬度显著上升,当负相电压-100 V时,可以获得1265 HV的最高硬度。当负
针对热力管道开裂问题频发现象,通过搭建与实际工况相似的试验平台,利用A-TIG焊(Activating flux TIG welding)对热力管道裂纹进行了修复。研制的纯氧化物低碳钢活性剂可以将8 mm厚的Q235试板焊透。修复试验结果表明:在管道无积液情况下,利用A-TIG焊可以修复6 mm壁厚的管道裂纹,调整工艺参数可以修复更大壁厚的管道裂纹,在管道有积液情况下,配合手工焊进行密封焊接,然后进行A-TIG焊可以修复6 mm壁厚的管道裂纹,提高了热力管道裂纹修复的效率和质量。
为了提高常见汽车传动轴的耐磨性及力学性能,分别采用激光淬火及激光熔覆技术对40CrNiMo钢表面进行了激光强化处理。利用金相显微镜、扫描电子显微镜(SEM)观察了试样的微观形貌;利用显微硬度计测试了淬火试样的硬度;利用高低温摩擦磨损试验机测试了淬火试样的摩擦磨损性能;利用万能力学试验机对熔覆层的力学性能进行了评估。结果表明:40CrNiMo钢经激光淬火后,表面出现一层相变硬化区,深度约为300μm,硬度值最高可达815.6 HVH2N,约为基体的3.2倍;平均摩擦系数0.391,与传
为了实现宽带平稳吸收电磁波,本工作设计了一种微波宽带完美超材料吸波体(Metamaterial absorber,MA)。使用等效电路模型和COMSOL仿真软件对其结构参数进行了优化仿真,通过电场和表面电流密度分布以及等效输入阻抗分析了MA宽带强吸收的机理,研究了其极化和斜入射特性以及各层结构的吸收响应。结果表明,电磁波正入射时MA在5~9.2 GHz的频率范围内达到了90%以上的吸收率,平均吸收率高达97.71%,特别是在5.9~8 GHz的宽带内实现了完美吸收电磁波(吸收率大于99%,反射率小于1%)
本工作研究了ZnO掺杂对钙硼硅系玻璃陶瓷的晶相组成、微观结构以及宏观性能的影响。采用Rietveld精修法计算该体系的结晶度和晶相含量,结果表明,ZnO掺杂有助于该体系的析晶,并促进石英和硅灰石的生成。ZnO掺杂促进了该体系的烧结致密化,玻璃陶瓷的力学性能因此得到显著提升。当ZnO掺杂量为8%(质量分数,下同)时,该体系的抗弯强度和杨氏模量分别高达207.9 MPa和82.9 GPa,介电常数为5.75,介电损耗为7.1×10-4,热膨胀系数为9.62×10-6
盾构刀具由硬质合金刀头与高强度钢基体钎焊连接而成。硬质合金刀头的过早脱落与过快磨损是影响盾构刀具工作寿命的主要原因。激光技术具有节能、快速、绿色、精确自动化的独特优势。应用激光技术对硬质合金进行表面处理,可提高盾构刀具的可靠性。综述了改善硬质合金性能的激光技术,论述了激光处理对盾构刀具性能的改善情况;详细评述了激光织构技术对硬质合金钎焊性能、表面摩擦性能以及涂层结合强度的改善研究;介绍了激光相变硬化技术对硬质合金表面进行处理,提高硬质合金刀具耐磨性的研究进展;最后对盾构刀具硬质合金表面激光处理的发展趋势进