太浦河金泽水源地岸带结构及其环境资源状况调查研究

来源 :华东师范大学学报(自然科学版) | 被引量 : 0次 | 上传用户:qwer2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要: 以“十三五”國家重大水专项上海市青浦区金泽水源地雨水径流污染防控技术示范区——大莲湖为研究区域, 针对示范区内岸带的类型及坡度、岸带土壤的性质和土著植物的种类进行系统的调研分析, 为后续河岸带地表径流污染阻控技术研发提供基础数据资料支撑. 分析结果表明: 示范区周边主要护岸类型为近自然和硬质护岸, 以缓坡为主; 水生植物和陆生植物分别以荷花、芦苇和草本植物居多. 此外, 研究区采样点中, 临近农田土壤全氮含量平均值在0.95 g/kg上下波动, 高于进水闸附近土壤的0.42 g/kg; 临近居民生活区、鱼塘养殖和农田区的土壤全磷含量多在1.58 g/kg以上, 高于湖岸护坡土壤的1.10 g/kg; 有机质平均含量为11.30 g/kg, 其中植物密布区有机质含量较高, 表明当地的鱼塘养殖业以及农业对土壤环境造成了一定污染.
  关键词: 太湖流域; 金泽水源地; 岸带结构; 环境资源调查; 污染防控
  中图分类号: X52 文献标志码: A DOI: 10.3969/j.issn.1000-5641.2021.04.009
  Coastal structure and environmental resources of the Jinze water source area of Taipu River
  LIU Chang1,2,3,4, YU Bowen1,2,3,4, CAO Chengjin1,2,3,4, HUANG Minsheng1,2,3,4, WANG Xing5, WANG Difang1,2,4, ZHA Yang1,2,3,4, LI Mengzhuo1,2,3,4, DU Haochen1,2,3,4
  (1. Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; 2. Institute of EcoChongming, Shanghai 202162, China; 3. Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; 4. Technology Innovation Center for Land Spatial EcoRestoration in Metropolitan Area (Ministry of Natural Resources), Shanghai 200062, China; 5. Chinese Academy of Environmental Sciences, Beijing 100012, China)
  Abstract: In this paper, we consider the rainwater runoff prevention and control technology demonstration area of the Jinze water source area in Qingpu District, Shanghai - Dalian Lake; the research area is a national major water project from the “13th Five-Year Plan”. Our study includes systematic research analysis on the type and slope of the riparian zone, the nature of the riparian soil, and the species of indigenous plants in the demonstration area; the study provides essential data to support subsequent research on the use of experimental rainwater gradient control technology in the riparian zone. The analysis shows that the riparian zone in the demonstration area is comprised of near-natural and rigid riparian, with gentle slopes. The aquatic and terrestrial plants in the zone with the largest population include lotus, reed, and herbaceous plants, respectively. Among the sampling sites in the study area, the average total nitrogen content of the soil in the adjacent farmland fluctuated around 0.95 g/kg, while the soil near the inlet gate was measured at 0.42 g/kg. The total phosphorus content of the soil in the adjacent residential living area, fish pond culture, and farmland area was more than 1.58 g/kg, while the soil at the lakeshore berm was measured at 1.10 g/kg. The average organic matter content was 11.30 g/kg, with higher values recorded in the densely planted area. These results confirm that local fishpond farming and agriculture have contributed to pollution of the soil environment.   [ 1 ]WU Y, DAI H, WU J. Comparative study on influences of bank slope ecological revetments on water quality purification pretreating low-polluted waters [J]. Water, 2017, 9(9): 636-649.
  [ 2 ]达良俊, 颜京松. 城市近自然型水系恢复与人工水景建设探讨 [J]. 现代城市研究, 2005, 20(1): 8-15.
  [ 3 ]YUAN D H, GUO X J, XIONG Y, et al. Pollutant-removal performance and variability of DOM quantity and composition with traditional ecological concrete (TEC) and improved multi-aggregate eco-concrete (IMAEC) revetment treatments [J]. Ecological Engineering, 2017, 105: 141-149.
  [ 4 ]JU L, CAI J. Effect of different substrates on river self-purification in Gabion revetment [J]. Chinese Journal of Environmental Engineering, 2012, 6(5): 1565-1570.
  [ 5 ]宋睿, 高禮洪. 生态型鱼槽砖应用研究 [J]. 城市道桥与防洪, 2014(11): 200-202.
  [ 6 ]李华翔, 宁立波, 杜博涛, 等. 岩质边坡生态袋覆绿技术适用条件研究 [J]. 环境科学与技术, 2017, 40(4): 13-18.
  [ 7 ]LI Q, YANG X, SONG H. Effect of coupling microorganism type of eco-bags on water purification [J]. Water Purification Technology, 2018, 37(1): 117-122.
  [ 8 ]张宏伟, 朱雪诞, 车越, 等. 基于区域发展与水源保护的大莲湖生态修复途径 [J]. 中国给水排水, 2009, 25(18): 6-9.
  [ 9 ]于晓青, 赵莉. 凯氏法测定土壤中全氮 [C]//中国环境科学学会学术年会论文集, 2015: 1342-1345.
  [10]陈元松, 侯明韬, 马丹, 等. 碱熔-钼锑抗分光光度法测定土壤中总磷 [J]. 中国标准化, 2018(S1): 195-198.
  [11]中华人民共和国农业部. 土壤检测第6部分: 土壤有机质的测定 [M]. 北京: 中国标准出版社. 2006: 1-3.
  [12]金泽志编纂委员会. 金泽志. 青浦乡镇志系列丛书 [M]. 上海: [出版者不详], 2004.
  [13]JIN Z, CHEN C, CHEN X, et al. The crucial factors of soil fertility and rapeseed yield - A five years field trial with biochar addition in upland red soil, China [J]. Science of the Total Environment, 2018, 649: 1467-1480.
  [14]朱兆良. 中国土壤氮素研究 [J]. 土壤学报, 2008, 45(5): 778-783.
  [15]全国土壤普查办公室. 中国土壤 [M]. 北京: 中国农业出版社, 1998.
  [16]MONACO S, SACCO D, PELISSETTI S, et al. Laboratory assessment of ammonia emission after soil application of treated and untreated manures [J]. Journal of Agricultural Science, 2012, 150(1): 65-73.
  [17]沈丽, 于兴娜, 项磊. 2006—2014年江苏省氨排放清单 [J]. 中国环境科学, 2018(1): 26-34.
  [18]胡春胜, 张玉铭, 秦树平, 等. 华北平原农田生态系统氮素过程及其环境效应研究 [J]. 中国生态农业学报, 2018, 26(10): 1501-1514.
  [19]FU B J, GUO X D, CHEN L D, et al. Soil nutrient changes due to land use changes in Northern China: A case study in Zunhua County, Hebei Province [J]. Soil Use & Management, 2010, 17(4): 294-296.
  [20]WEI X, WU S C, NIE X P, et al. The effects of residual tetracycline on soil enzymatic activities and plant growth [J]. Journal of Environmental Science & Health Part B, 2009, 44(5): 461-471.
  [21]谢文明, 于飞, 冯晓宇, 等. 太湖流域农村地区典型村镇土壤养分和水体污染现状调查 [J]. 土壤, 2014(4): 613-617.
  [22]曾立雄, 黄志霖, 肖文发, 等. 三峡库区不同土地利用类型氮磷流失特征及其对环境因子的响应 [J]. 环境科学, 2012, 33(10): 3390-3396.
  [23]GHOSH A, BHATTACHARYYA R, MEENA M C, et al. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol [J]. Soil & Tillage Research, 2018, 177: 134-144.
  [24]LI Z, LIU C, DONG Y, et al. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–gully region of China [J]. Soil & Tillage Research, 2017, 166: 1-9.
  (责任编辑: 张 晶)
其他文献
建立了高效液相色谱法测定聚碳酸酯副产物氯化钠溶液中双酚A和苯酚含量的方法。采用C18色谱柱(250 mm×4.6 mm,5μm),以乙腈-甲醇、水作为流动相(体积比为54∶6∶40),流量为1.0 mL/min,在波长为278 nm处采用紫外检测,以外标法定量。双酚A、苯酚的质量浓度在1.0~8.0 mg/L范围内与色谱峰面积线性关系良好,线性相关系数均大于0.999,检出限为0.025~0.050 mg/L,测定结果的相对标准偏差分别为1.33%、1.48%(n=6),加标回收率为99.65%~100.
基于等效传热系数法与正交试验法,针对既有建筑各组成类型围护结构的热工性能提出了一种分类诊断方法.该诊断方法首先将各类型围护结构的传热系数综合成一个等效指标——综合等效传热系数.只需要测量既有建筑室内外温度序列与各类型围护结构的几何尺寸,便可以计算出综合等效传热系数,再通过正交试验法与回归分析法求出各类型围护结构的等效传热系数.将各类型围护结构的等效传热系数与节能设计标准中传热系数的限值进行比较,便可以诊断其热工性能.为了验证方法的可行性,以位于长沙市的一栋实验小房为例进行计算,得到了外墙、外窗、屋顶与外门
预制拼装UHPC桥梁的拼接接缝是该类桥梁整体受力尤其是剪切受力的关键.为探究UHPC大键齿干接缝的直剪性能,基于ABAQUS塑性损伤模型建立了非线性有限元模型,并采用现有文献的UHPC键齿干接缝试验数据进行了模型校验.以校验的有限元模型为基础,研究了UHPC大键齿干接缝直剪性能及剪切破坏过程,揭示了其两种主要破坏模式,即滑移破坏和直剪破坏.同时,开展了UHPC干接缝的大键齿尺寸参数分析,考虑的参数主要包括:键齿深度、键齿倾角和侧向应力;根据计算分析结果,大键齿尺寸建议取深齿比0.15~0.25且键齿倾角小