论文部分内容阅读
Quantitative structure property relationship (QSPR) method is used to study the correlation models between the structures of a set of diverse organic compounds and their log P . Molecular descriptors calculated from structure alone are used to describe the molecular structures. A subset of the calculated descriptors, selected using forward stepwise regression, is used in the QSPR models development. Multiple linear regression (MLR) and radial basis function neural networks (RBFNNs) are utilized to construct the linear and non linear correlation model, respectively. The optimal QSPR model developed is based on a 7 17 1 RBFNNs architecture using seven calculated molecular descriptors. The root mean square errors in predictions for the training, predicting and overall data sets are 0.284, 0.327 and 0.291 log P units, respectively.
Quantitative structure property relationship (QSPR) method is used to study the correlation models between the structures of a set of diverse organic compounds and their log P. Molecular descriptors calculated from structure alone are used to describe the molecular structures. A subset of the calculated descriptors , selected using forward stepwise regression, is used in the QSPR models development. Multiple linear regression (MLR) and radial basis function neural networks (RBFNNs) are utilized to construct the linear and non linear correlation models, respectively. based on a 7 17 1 RBFNNs architecture using seven calculated molecular descriptors. The root mean square errors in predictions for the training, predicting and overall data sets are 0.284, 0.327 and 0.291 log P units, respectively.