论文部分内容阅读
为应用深度学习和遥感影像实现养殖水体信息的快速提取,以成都平原为研究区,以Sentinel 2A和高分6号多光谱影像为数据源,基于国产开源深度学习平台PaddlePaddle训练Deeplabv3+语义分割模型,构建遥感影像的水体语义分割模型,用于提取成都平原养殖水体信息。Deeplabv3+方法的总体精度和Kappa系数分别达到94.14%和0.88,均高于归一化差分水体指数法和最大似然监督分类法;模型对阴影和建筑物等误分为水体的抑制效果较好,而对小面积和细小线状水体信息的提取则受影像分辨率影响,