一种基于逆近邻和影响空间的DBSCAN聚类分析算法

来源 :计算机应用与软件 | 被引量 : 0次 | 上传用户:pingzidege
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
密度聚类是数据挖掘和机器学习中最常用的分析方法之一,无须预先指定聚类数目就能够发现非球形聚类簇,但存在无法识别不同密度的相邻聚类簇等问题.采用逆近邻和影响空间的思想,提出一种密度聚类分析算法.利用欧氏距离计算数据对象的K近邻与逆近邻,依据逆近邻识别其核心对象,并确定其核心对象的影响空间;利用逆近邻和影响空间,重新定义密度聚类簇扩展条件,并通过广度优先遍历搜索核心对象的影响空间,形成密度聚类簇,有效解决了无法区分不同密度相邻聚类簇等不足,提高了密度聚类分析效果和效率.基于UCI和人工数据集实验验证了该算法的有效性.
其他文献
为了提高Stacking集成算法的分类性能,充分利用Stacking学习机制产生的先验信息和贝叶斯网络丰富的概率表达能力,提出一种基于属性值加权朴素贝叶斯算法的Stacking集成分类算法AVWNB-Stacking(Stac-king based Attribute Value Weight Naive Bayes).通过考虑属性值这个深层次的因素,以互信息(Mutual Informa-tion,MI)作为权值度量的基础,对属性权值向量横向扩展为每个属性值分配一个权值,避免不同的属性值共享相同的权值,