【摘 要】
:
直流GIL中线形金属微粒受力运动极易引发气体间隙击穿或者绝缘子沿面闪络,降低GIL的绝缘性能,严重影响直流输电系统的安全可靠运行.为研究直流GIL中线形金属导电微粒电动力学行为机理,搭建自由微粒实验装置和观测平台,并建立直流下微粒电动力学模型.通过实验与仿真相结合的方法,获得线形金属微粒荷电特性、启举与运动特性以及微粒运动导致的气隙击穿特性,并从微观角度解释了微粒启举与运动现象形成的原因.研究结果表明,线形启举电压只与半径有关,与长度和电压极性无关,随着半径增大,启举电压升高,直流电压极性不影响金属微粒启
【机 构】
:
山东大学电气工程学院 济南 250061
论文部分内容阅读
直流GIL中线形金属微粒受力运动极易引发气体间隙击穿或者绝缘子沿面闪络,降低GIL的绝缘性能,严重影响直流输电系统的安全可靠运行.为研究直流GIL中线形金属导电微粒电动力学行为机理,搭建自由微粒实验装置和观测平台,并建立直流下微粒电动力学模型.通过实验与仿真相结合的方法,获得线形金属微粒荷电特性、启举与运动特性以及微粒运动导致的气隙击穿特性,并从微观角度解释了微粒启举与运动现象形成的原因.研究结果表明,线形启举电压只与半径有关,与长度和电压极性无关,随着半径增大,启举电压升高,直流电压极性不影响金属微粒启举电压幅值;线形微粒的运动及导致的气隙击穿与微粒半径、长度和电压极性有关,线形金属微粒半径小、长度增加时容易导致气隙击穿;线形金属微粒形状的不规则使得电场畸变作用加强,极性效应更明显.电晕极性效应导致正负极性下线形微粒的启举与运动及运动致气隙击穿特性呈现出明显的规律,当达到启举电压时,正极性下,线形金属微粒一端抬起后,在下极板小幅跳跃、旋转或者直立,难以贯穿气隙;负极性下,线形金属微粒贯穿气隙运动,极易出现飞萤现象,为直流GIL中线形金属微粒污染防治提供了理论指导.
其他文献
锂离子电池健康状态(SOH)的准确估计是电池管理系统(BMS)的关键技术.该文提出一种基于数据驱动与经验模型组合的在线SOH预测方法.通过电池容量增量分析(ICA),找出与SOH相关性较高的两个电压升片段下所耗时间作为电池外部健康特征(HF),并使用高斯过程回归(GPR)的方法建立电池老化的数据驱动模型.利用数据驱动模型对电池工作初期的SOH进行预测,并使用预测值拟合指数经验模型.之后,电池各循环下的SOH用指数经验模型来预测,并且每隔固定循环次数使用观测器对指数模型参数进行一次修正,以保证电池SOH预测
具有电压调整单元(VAU)的双有源桥(DAB)直流变换器是解决宽电压输入时电感电流应力问题的方案之一,然而VAU-DAB存在级联稳定性问题.该文分别推导前级VAU输出阻抗模型和后级DAB输入阻抗模型,在复频域下根据禁区概念阻抗稳定性判据分析级联系统阻抗比,研究阻抗特性对级联系统稳定性的影响.由于VAU输出阻抗谐振峰值与DAB输入阻抗存在交叉点,使级联系统由于阻抗不匹配而导致系统电压振荡失稳.在此基础上,该文基于阻抗匹配准则,提出一种基于超前-滞后的阻抗优化调节器用以抑制VAU输出阻抗谐振尖峰,使级联系统阻
高压直流断路器是柔性直流电网的核心装备,在数毫秒内分断高达25kA的大电流,分断过程会产生强烈的电磁骚扰,可能导致与绝缘栅双极型晶体管(IGBT)直接相连的驱动和控制电路无法工作.由于缺乏针对直流断路器位于高电位驱动的电磁干扰考核方法,导致驱动设计没有标准可依.该文通过理论分析和试验测试相结合,对分断时电磁瞬态过程进行数学建模,定性分析端口产生的电磁干扰原因,并在实验室首次测试了500kV混合式直流断路器样机在大电流分断时,集电极和发射极(VCE)、门极驱动(VGE)和电源等端口干扰信号,提炼了时、频域干