论文部分内容阅读
当前方法对动态孤立手势的识别,过程复杂、成本高,动态手势的移动轨迹易受到外界环境的干扰、识别准确率低.提出了基于Kinect的动态孤立手势识别方法,利用Kinect传感器获取动态手势信息,对人体手部进行实时、准确的定位跟踪,并对手部图像进行平滑去噪处理,提取动态手势轨迹的特征;引入隐马尔可夫模型(HMM)对动态孤立手势及手部运动轨迹的样本集进行有效训练,最终实现动态孤立手势的精确识别.实验证明提出的方法在噪声干扰和光线缺失的环境下,对动态孤立手势仍具有较高的识别率,鲁棒性强.