支持向量机的汉语连续语音声调识别方法

来源 :计算机科学 | 被引量 : 12次 | 上传用户:edgeofsky
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
声调信息在汉语语音识别中具有非常重要的意义。采用支持向量机对连续汉语连续语音进行声调识别实验,首先采用基于Teager能量算子和过零率的两级判别策略对连续语音进行浊音段提取,然后建立了适合于支持向量机分类模型的等维声调特征向量。使用6个二类SVM模型对非特定人汉语普通话的4种声调进行分类识别,与BP神经网络相比,支持向量机具有更高的识别率。
其他文献
自动信任协商为开放环境中希望进行资源共享或业务协作的陌生双方提供了一种灵活的信任建立方法。然而现有自动信任协商系统之间不具备可互相操作性,首要原因是缺少一个统一
在博弈求解中参与者被假定为理性的,即总是追求其最大期望效用。但这一理性假设在博弈论中没有一个很清晰的形式定义,通常是把主体间对理性的相互认识假设为公共知识(common kno
通过运用SMO分解思想和支持向量回归机SVR模型的约束条件,将SVR模型的求解问题转化成一系列的给定区间内抛物线的最小值求解问题,对于非正定核而言由于只改变其中部分抛物线的
在放大转发的OFDM协作通信网络中,由于第一跳传输(源节点到中继节点)与第二跳传输(中继节点到目的节点)的信道存在独立性,因此合适的子载波映射策略可以有效地提高信道容量,但存
移动自组网具有无线信道、动态拓扑、缺乏基础设施和节点资源受限等特点,更易受到安全威胁,且无法部署复杂的安全协议和算法。为了有效检测移动自组网中的异常访问行为,提出
连续属性离散化方法对后续阶段的机器学习和数据挖掘过程有着重要的意义。提出一种新的针对决策表的离散化算法,在该算法中,首先将信息熵用作判断标准,从候选断点集中选择合适的
提出了基于数学形态学的聚类集成算法CEOMM。它利用不同的结构元素的探针作用,对不同的结构元素探测出来的簇核心图进行集成,在集成所得到的簇核心基础上聚类。实验结果表明,算法CEOMM对有复杂类形状的数据集进行聚类时,效果比传统聚类算法更好,且能确定聚类数。而且由于采用了不同的结构元素进行探测,对于由不同形状的类构成的数据集其聚类效果很理想。
互联网在飞速发展的同时,也给网络系统的正常运行带来了一系列的问题,其中最突出的是由网络流量过大引起的网络拥塞。通过对多种流控方法的研究,最终从队列调度方面着手,利用
多核处理器的新特性给MPI应用带来了新的优化空间,其中调优MPI运行时参数被证明是优化MPI应用的有效方法。然而最优的运行时参数不仅与多核机群的体系结构有关,也决定于MPI应用
P2P网络的开放、匿名特性使得系统极易遭受恶意用户的攻击,信任模型是减少此类威胁的有效方法。信任模型的有效性依赖于信任数据的可靠性,因此信任数据对于信任模型来说至关