联合深度学习的通用血流向量成像方法

来源 :计算机应用 | 被引量 : 0次 | 上传用户:zhut2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对传统的超声血流向量成像(VFM)技术需要专有软件来获取原始多普勒和散斑跟踪数据的限制,提出一种联合深度学习的通用VFM方法.首先,使用速度标尺获取彩色多普勒超声心动图提供的沿声束方向的速度作为径向速度分量;然后,使用U-Net模型自动识别左心室壁轮廓,通过重新训练的PWC-Net模型计算左心室壁速度作为连续性方程的边界条件,并通过求解连续性方程获取各血液质点垂直于声束方向的速度分量(即切向速度分量);最后,合成心脏流场速度矢量图,并实现心脏流场流线图的可视化.实验结果表明,所提方法得到的心脏流场速度矢量图和流线图能准确反映左心室所对应的时相,得到的可视化结果与Aloka提供的VFM工作站的分析结果是一致的,符合左心室流体动力学特征.所提方法作为一种通用、快速的VFM方法,不需要任何供应商的技术支持和专有软件,可以进一步推进VFM在临床工作流程中的应用.
其他文献
针对自动化码头船舶配载效率较低的问题,为了提高设备资源利用率,提出了一种基于船舶配载特点设计的固定集搜索(FSS)算法.首先,在考虑一般船舶配载原则的基础上,以桥吊作业计划为依据,引入箱区作业均衡因素,将最小化箱区翻箱量、总装船时间以及尽可能的箱区作业均衡作为目标,建立自动化码头船舶配载混合整数规划模型;其次,通过固定较优解中多次出现的元素来寻求最优解.实验结果表明,不同规模的实例下,FSS算法相较于Cplex,翻箱量和不均衡箱数分别平均减少了22.3%和11.7%,目标函数值平均优化了6.5%;所提固定
针对目前出租车交接班行为识别不够精准的问题,提出了一种基于轨迹数据挖掘的出租车交接班行为精准识别的方法.首先,分析出租车停留状态的数据特性后,提出了一种出租车非运营状态停留点检测方法;然后,对停留点进行聚类,从而得出了潜在的出租车交接班地点;最后,基于出租车交接班事件的判断指标与出租车交接班时间的核密度估计,有效地识别出出租车交接班地点和时间.以福州市4416辆出租车的轨迹数据为实验样本,共识别出了5639个交接班地点,这些交接班地点在市民主要工作区域、交通枢纽、商圈以及风景名胜.而识别出的交接班时间主要