基于自动秩估计的黎曼优化矩阵补全算法及其在图像补全中的应用

来源 :电子与信息学报 | 被引量 : 3次 | 上传用户:zap2050zap
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
矩阵补全(MC)作为压缩感知(CS)的推广,已广泛应用于不同领域。近年来,基于黎曼优化的MC算法因重构精度高、计算速度快的特点,引起了广泛关注。针对基于黎曼优化的MC算法需假设原矩阵秩固定已知,且随机选择迭代起点的特点,该文提出一种基于自动秩估计的黎曼优化MC算法。该算法通过优化包含秩正则项的目标函数,迭代获取秩估计值和预重构矩阵。在估计所得秩对应的矩阵空间上以预重构矩阵为迭代起点,利用基于黎曼流形的共轭梯度法进行矩阵补全,从而提高重构精度。实验结果表明,与几种经典的图像补全方法相比,该文算法图像重
其他文献
远程医学(Telemedicine),从广义上讲是医学与现代通讯学、电子学相结合的新学科,它使用远程通讯技术和计算机多媒体技术为医学提供信息和服务.它包括远程会诊、咨询、教学、
该文针对平坦衰落信道下存在信道参数差异的多天线接收信号联合参数估计和符号检测问题,提出一种基于变分贝叶斯的联合处理算法。算法直接利用多个接收数据流进行信息符号的估计,抑制传统信号合成与解调解耦处理带来的性能损失。将问题建模为已知多组观测数据条件下发送符号、信道传输时延、信道增益和噪声功率的联合最大后验估计问题。基于变分贝叶斯理论对该最大后验进行近似求解,在相对熵最小化的准则下,推导得到了各个待估参
针对核极限学习机高斯核函数参数选优难,影响学习机训练收敛速度和分类精度的问题,该文提出一种K插值单纯形法的核极限学习机算法。把核极限学习机的训练看作一个无约束优化问题,在训练迭代过程中,用Nelder-Mead单纯形法搜索高斯核函数的最优核参数,提高所提算法的分类精度。引入K插值为Nelder-Mead单纯形法提供合适的初值,减少单纯形法的迭代次数,提高了新算法的训练收敛效率。通过在UCI数据集上