论文部分内容阅读
在中医药领域挖掘药组频繁项集时发现,尽管有些项集的支持度比人们需要的频繁项集的支持度高很多,但这些项集并不是人们感兴趣的,即过分频繁反而变得平凡.本文引入支持度区间的概念,提出了适合中药数据挖掘的二维TCM-FP森林结构及其建树算法.在针对疾病症状的中药药组挖掘过程中,采用优化的搜索策略开发了基于支持度区间的TCMA维间最大频繁项集挖掘算法.这种算法既缩小了挖掘的范围又提高了规则的意义,并且具有较高的执行效率.