论文部分内容阅读
Using the secondary spinel standard, the authors have precisely measured the Fe3+/∑ Fe values of spinels in mantle xenoliths from Cenozoic basalts in eastern China, and estimated the oxygen fugacities recorded by 63 mantle xenoliths through olivine-orthopyroxene-spinel oxygen barometry. The results indicate that the oxygen fugacities of the lithospheric mantle in eastern China are higher in the south than in the north. Among them, the oxygen fugacity of the North China craton lithospheric mantle is the lowest, similar to that of the oceanic mantle, while that of Northeast and South China are the same as that of the global continental mantle. The variations of mantle redox state in eastern China are mainly controlled by the C-O-H fluids derived from the asthenospheric mantle. According to the mantle oxidation state, it can be concluded that the C-O-H fluids in the lithospheric mantle of eastern China consist mainly of CO2 and minor H2O, but CH4-rich fluids should come from the asthenosphere where the ox
Using the secondary spinel standard, the authors have precisely measured the Fe3 + / Σ Fe values of spinels in mantle xenoliths from Cenozoic basalts in eastern China, and estimated the oxygen fugacities recorded by 63 mantle xenoliths through olivine-orthopyroxene-spinel oxygen barometry. indicate that the oxygen fugacities of the lithospheric mantle in eastern China are higher in the south than in the north. Among them, the oxygen fugacity of the North China craton lithospheric mantle is the lowest, similar to that of the oceanic mantle, while that of Northeast and South China are the same as that that the global continental mantle. The variations of mantle redox state in eastern China are mainly controlled by the COH fluids derived from the asthenospheric mantle. According to the mantle oxidation state, it can be concluded that the COH fluids in the lithospheric mantle of eastern China consist mainly of CO2 and minor H2O, but CH4-rich fluids should come from the astheno sphere where the ox