论文部分内容阅读
针对同一场景红外图像与可见光图像的融合问题,提出了一种基于非抽样Shearlet变换(NSST)的融合算法。首先对源图像进行多尺度、多方向NSST分解,得到低频子带系数和各带通方向子带系数;然后,在局部区域结构相似度的基础上,采用基于局部区域能量的方法选择融合图像的低频子带系数;基于脉冲耦合神经网络(PCNN)对带通方向子带空间频率(SF)的响应而得到的点火次数选择融合图像的带通方向子带系数,得到融合图像的NSST系数;最后经过非抽样Shearlet逆变换得到融合图像。实验结果表明:与其他5种相关的