Real-time rock mass condition prediction with TBM tunneling big data using a novel rock-machine mutu

来源 :岩石力学与岩土工程学报(英文版) | 被引量 : 0次 | 上传用户:chao_huang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Real-time perception of rock mass information is of great importance to efficient tunneling and hazard prevention in tunnel boring machines (TBMs). In this study, a TBM-rock mutual feedback perception method based on data mining (DM) is proposed, which takes 10 tunneling parameters related to sur-rounding rock conditions as input features. For implementation, first, the database of TBM tunneling parameters was established, in which 10,807 tunneling cycles from the Songhua River water conveyance tunnel were accommodated. Then, the spectral clustering (SC) algorithm based on graph theory was introduced to cluster the TBM tunneling data. According to the clustering results and rock mass bore-ability index, the rock mass conditions were classified into four classes, and the reasonable distribution intervals of the main tunneling parameters corresponding to each class were presented. Meanwhile, based on the deep neural network (DNN), the real-time prediction model regarding different rock conditions was established. Finally, the rationality and adaptability of the proposed method were vali-dated via analyzing the tunneling specific energy, feature importance, and training dataset size. The proposed TBM-rock mutual feedback perception method enables the automatic identification of rock mass conditions and the dynamic adjustment of tunneling parameters during TBM driving. Furthermore, in terms of the prediction performance, the method can predict the rock mass conditions ahead of the tunnel face in real time more accurately than the traditional machine learning prediction methods.
其他文献
为了克服SRTM和ASTER各自缺陷,充分结合二者优势得到更高质量的DEM,提出了一种基于神经网络模型的加权融合方法.首先,统一两种DEM坐标系和高程基准;其次,借助后向传播神经网络分别建立SRTM与ASTER高程误差和地形因子的非线性关系模型;然后,利用此模型估计各DEM的误差分布;最后,根据该误差计算SRTM和ASTER融合权重,并实现SRTM和ASTER加权融合.以董志塬为研究区进行分析.结果表明:融合后DEM精度有明显提高,相比于原始SRTM和ASTER,平均绝对误差分别降低了1.29 m和3.6
旅游城市因其性质、职能与发展演化历程的特殊性,其滨水空间人地关系变迁显现出独有特质.研究以典型的旅游城市滨水空间——黄山市中心城区屯溪区为例,通过结合滨水地域特性构建人地关系地域系统理论框架,系统分析其滨水空间人地关系的变迁历程.研究发现,黄山市中心城区滨水空间人地关系演化经历了3个主要阶段:在古、近代屯溪因水而兴,滨水空间主要发挥着交通商贸的功能,人地关系呈现自发依存的特征;改革开放以来产业粗放发展,人类对滨水空间进行了较为强烈的干预破坏,人地关系逐渐失衡;而随着生态文明建设及生态补偿机制的实施,旅游城
云南是一个高原多山、多民族的特殊地理区,复杂的人地关系、丰富的山地资源、独特的地理环境为地理科技工作者提供了丰富的研究对象.1987 ~1996年郭来喜在担任云南省地理研究所所长期间,发展云南地理科学,为民族、边疆、高原人地关系研究和扶贫、边疆口岸开放等社会经济发展做出了突出贡献、在深切怀念郭先生为地理科研事业建立丰功伟绩的同时,也回顾了发展云南省地理科学研究的历程.
环滇池地区是云南省经济发展最具活力、高原湖泊生态脆弱和民族文化多元融合的典型区域.运用主成分分析、标准差椭圆和地理加权回归分析法以揭示该区域县域经济空间格局演变特征及影响因素.研究表明:1995~2018年,该地区县域经济发展水平大幅提高且区域差异逐渐缩小;总体上由以翠湖为核心向以滇池为核心演变,五华、盘龙、西山和官渡区在经济发展中仍占主导地位,但拉动作用逐渐减弱,呈贡区成为滇池东岸经济新高地;行政力、工业化水平和市场化程度先后深刻塑造着该地区县域经济格局,行政力、市场化程度对经济发展具有正向作用,工业增
利用红河州新一代天气雷达观测数据,结合高空、地面观测资料,对2020年4月22日凌晨发生在滇南地区的一次极端强对流天气过程进行分析.结果 表明,受南支槽东移、高低空冷暖平流和高低空急流影响,触发了此次强对流天气.分析雷达回波发现,极端天气过程为弓形回波中靠南端的单体风暴在东移过程中发展增强为超级单体风暴并造成严重的风雹灾害.超级单体风暴雷达特征维持时间久,三体散射长钉回波长,VIL值大且大于50 (kg·m-2);径向速度图上有逆风区、中尺度辐合和中气旋等特征;另外,从6.0°仰角上看,大冰雹和雨粒子的Z
Data related to the pre-grouting work of a large underground project are systematically analyzed to reveal the mechanism behind, to shed some light on the execution of practical grouting, and to enrich the theory of engineering geology. Grouting is genera
The spatial information of rockhead is crucial for the design and construction of tunneling or under-ground excavation. Although the conventional site investigation methods (i.e. borehole drilling) could provide local engineering geological information, t
Discrimination of seismicity distributed in different areas is essential for reliable seismic risk assessment in mines. Although machine learning has been widely applied in seismic data processing, feasibility and reliability of applying this technique to
Roof falls due to geological conditions are major hazards in the mining industry, causing work time loss, injuries, and fatalities. There are roof fall problems caused by high horizontal stress in several large-opening limestone mines in the eastern and m
喜马拉雅地区淡色花岗岩广泛分布,但相关的稀有金属成矿问题长期被学术界忽略,因为传统观点认为,这些花岗岩是高喜马拉雅变质岩系原地部分熔融而成.但自提出该地区淡色花岗岩高度结晶分异成因模式后,与这些花岗岩演化相关的稀有金属成矿问题引起各方重视,并在铍和铌钽的矿化研究方面取得显著进展.尽管如此,锂的成矿作用研究和资源寻找并没有取得大的突破.本期《岩石学报》报道的喜马拉雅中部琼嘉岗和热曲锂辉石伟晶岩及珠峰前进沟锂电气石-锂云母伟晶岩的发现,充分说明喜马拉雅地区锂资源前景广阔,表明喜马拉雅有望在近期内成为我国稀有金