论文部分内容阅读
提出一种基于异常值检测的电梯交通流递归预测方法。对电梯交通流进行时间序列分析得到初始季节时间序列模型,引入异常值检测过程,检测出训练数据中的异常值并进行修正,利用修正序列得到最终的季节时间序列模型。把最终的季节时间序列模型转化为状态空间形式,通过卡尔曼滤波实时调整状态向量,实现电梯交通流的在线预测。仿真结果证明该方法有效。