论文部分内容阅读
当前大多数方法需要对人脸进行对齐等预处理,这不仅影响验证流程的连续性,还严重影响人脸验证的效率。本文设计了两种神经网络模型及三个阶段式的训练验证构架以及基于深度特征与SIFT特征相结合的高效的非对齐人脸验证方法:方法利用卷积神经网络的池化层中间结果同步生成SIFT特征描述符从粗粒度到细粒度进行多级联的非对齐的人脸验证,这极大的提高人脸验证的速度及准确度;在训练阶段提出了使用三元组样本作为输入,Triplet loss作为损失函数有效提高不同人之间的区分度提高人脸验证的准确率;本文根据不同应用场景设计