论文部分内容阅读
基于信任的推荐算法将社交网络中的信任关系融入到推荐中,但数据的稀疏性迫使基于信任的方法要去考虑间接邻居,有限相似的邻居带来的长尾噪音问题降低了推荐准确度;目前已有的算法都假设用户的评分数据完全客观真实,而忽略了异常评分的存在。为了解决上述问题,文章提出新的用户相似度量方法筛选用户的信任邻居,并通过一次预测结果反馈检测并修正评分数据中的异常评分,然后进行二次预测。在真实的大规模数据集Epinions上进行实验,结果表明相比于传统的基于物品的协同过滤算法,该算法在RMSE上提高了6.0%,在M A E上提高了