论文部分内容阅读
现有路线大多基于历史轨迹的相似性进行推荐,容易忽略潜在新路线.为解决这一问题,利用隐马尔科夫模型对个性化的潜在路线推荐问题进行建模,提出一种可发现隐藏路线的推荐算法(HMMPath);根据用户指定的类别关键字序列生成访问点序列,结合路线长度、个性化路线分数以及访问点序列的可能性,为用户推荐满足个性化需求的路线;在真实签到数据集上通过改变数据集大小、查询类别关键字数量、查询类别关键字类型和推荐路线数量等参数验证所提算法的准确率和运行效率。结果表明,所提方法在包含4个以下短查询类别序列上的推荐准确率在70%以