论文部分内容阅读
车削凸凹圆弧装置的加工原理如图1原理示意图所示:M为可动拖板;1为刀杆,可滑动;C为刀尖;A为固定转动中心;AB为连杆;B点为刀杆与连杆的连接点(可转动) 1-刀杆;2-刀盒;3-连杆;4-支架;5-连接轴如图1原理图位置,取AB=R,CB=K,A为坐标原点,C点的坐标为C(x、y)。则有:x=(Rsinθ+K);y=Rcosθ故有:x+K=Rsinθ;y=-Rcosθ上两式两边平方相加得: (x+K)~2+y~2=R~2 sin~2θ+R~2cos~2θ=R~2 当将坐标轴y负方向平移距离K,即将原点A移至A′,则: x′=x+K=-Rsinθ;y′=-Rcosθ此时:x′~2+y~2=R~2 显然这是圆的标准方程,且CA′=BA=R,这就说明当连杆BA绕固定转动点A转动时,则刀尖
Machining convex and concave circular arc device processing principle diagram shown in Figure 1: M is a movable carriage; 1 for the arbor can slide; C for the tip; A fixed rotation center; AB for the link; B point is Arbor and connecting rod connection point (rotatable) 1- Arbor; 2- knife box; 3- connecting rod; 4- bracket; 5- connecting shaft position of the schematic diagram in Figure 1, take AB = R, CB = K , A is the coordinate origin, and the coordinates of point C is C (x, y). Then: x = (Rsinθ + K); y = Rcosθ Therefore: x + K = Rsinθ; y = -Rcosθ On both sides of the two squares add: 2 sin ~ 2θ + R ~ 2cos ~ 2θ = R ~ 2 When the coordinate axis y is translated in the negative direction by a distance K, that is, the origin A is moved to A ’, then x’ = x + K = -R sin θ; y ’= - R cos θ This time: x ’~ 2 + y ~ 2 = R ~ 2 Obviously this is the standard equation of the circle, and CA’ = BA = R, which means that when the connecting rod BA rotates around the fixed rotation point A,