论文部分内容阅读
云和寨气田石炭系黄龙组主要储集空间为孔隙和裂缝,属于低孔低渗型储层,而裂缝在改善储层渗透率方面发挥着重要的作用。以测井信息为基础,利用神经网络算法对该区未取心井储层的孔隙度、渗透率、含水饱和度参数及裂缝发育程度进行了预测。使用误差统计法对储层参数预测模型效果进行评价,预测效果满足本区所需储层参数计算的精度要求,证明了神经网络算法是在测井信息较少的情况下预测储层的有效手段,为气田评价井、开发井的部署、储量计算及气田开发方案的编制提供了可靠的地质依据。