论文部分内容阅读
为实现彩色图像噪声的滤波,基于模糊神经网络技术构建了一种新型的彩色图像滤波器.该滤波器通过对滤波窗口的彩色图像像素矢量进行模糊加权来判断邻近像素和中心像素的关系,针对不同性质的噪声由神经网络的自学习和自组织功能来自动调节滤波器的权值以实现噪声的滤除.用Flowers图像和Lena图像对经过训练的滤波器和矢量中值滤波器进行了测试对比.结果表明:模糊神经网络彩色滤器器无论对单纯的脉冲噪声及高斯噪声,还是二者的混合噪声,其滤除能力都要优于矢量中值滤器器,并且有较好的边缘和细节保持能力.