论文部分内容阅读
针对传统差分进化算法在求解高维复杂问题时存在通用性差、鲁棒性低、收敛速度慢和求解精度低等问题,提出一种基于蚁群算法的自适应多模式差分变异策略。算法在每代进化中,个体根据各变异进化模式上的信息素大小,采用轮盘赌选择策略选择变异算子,并根据各变异算子对优化所做贡献的大小对信息素进行动态更新,贡献大的变异算子可以获得更多被选择的机会,使得各变异算子发挥其最大性能,从而提高算法的收敛速度和通用性。对5个高维的benchmark函数进行算法验证,实验结果表明,该算法很好的提高了差分进化算法的通用性和鲁棒性,有效地克