论文部分内容阅读
为了高效地解决Web文档分类问题,提出了一种基于核鉴别分析方法KDA和SVM的文档分类算法。该算法首先利用KDA对训练集中的高维Web文档空间进行降维,然后在降维后的低维特征空间中利用乘性更新规则优化的SVM进行分类预测。采用了文档分类领域两个著名的数据集Reuters-21578和20-Newsgroup进行实验,实验结果表明该算法不仅获得了更高的分类准确率,而且具有较少的运行时间。