论文部分内容阅读
基于信任的推荐是一种新兴技术,其核心原理是利用用户信任网络选择可靠的建议者.虽然在先前的研究中认为它的鲁棒性优于协同过滤,但这种技术抵抗攻击的实际能力尚未被量化研究.我们就此问题提出了一个形式化的评估框架,并对2种代表性的算法进行了比较评估.实验采用的数据集来源于Epinions.com网站.实验结果展示了影响算法鲁棒性的关键因素,据此给出了几项应对策略.