论文部分内容阅读
针对一般基于知识迁移的方法对未知视角不可用和难以扩展新数据的问题,提出一种基于非线性模型的无监督学习方法,即基于非线性知识迁移(nonlinear knowledge shift,NKS)的串联特征学习。提取密集动作轨迹,并利用通用码书编码;提取动作捕捉数据模拟点的密集轨迹,产生一个仿真数据的大型语料库来学习NKS,其中,轨迹提取前在视角方向上投影模拟点;再从真实视频中提取轨迹,用于训练和测试表示学习过程的轨迹,利用多类支持向量机分类串联特征。在两大通用人体动作识别数据库IXMAS和3D(N-UCL