论文部分内容阅读
针对日常图像获取与处理过程中由于拍摄光线较差等问题,导致图像出现部分阴影,影响图像处理效果等问题,提出基于熵驱动域适应学习的弱光照图像阴影去除方法。通过熵驱动域适应学习技术构建多核分类器,获取弱光照图像的最大平均差异值,完成弱光照图像的预处理。将图像光照分解设定为图像分解与重光照,获取图像最小像素值,根据图像亮度以及RGB方向相似度建立局部像素的约束,完成弱光照图像的分解;采用区域生长法,以检测到的弱光照图像阴影边缘作为基准点,选择灰度值较重部分作为阴影生长起始点,确定弱光照图像的纹理特征值,利用光