论文部分内容阅读
针对油田抽油机井故障的特点,提出了基于T-S模糊神经网络的抽油机井故障诊断方法。即将神经网络的学习能力引入到模糊系统中,将模糊系统的模糊化处理、模糊推理、精确化计算通过分布式的神经网络来表示,从而提高系统的学习能力和表达能力。提出了基于LM优化的BP算法以提高网络收敛速度,利用MATLAB神经网络工具箱建立模糊神经网络诊断模型,经仿真测试表明,所提出的故障诊断方法能有效地对抽油机故障识别,正确率较高、效果较稳定,可提高网络训练及诊断速度。