论文部分内容阅读
针对供暖系统热负荷短期预测问题,利用改进的遗传算法(geneticalgorithm,GA)对BP神经网络(backpropaga—tionneuralnetwork)的初始权值和网络结构进行优化,并在遗传进化过程中采取保留最佳个体的方法。该方法克服了一般BP网络初始权值的随机性和网络结构训练过程中的所带来的网络震荡,以及一般BP网络容易陷入局部极小等问题。同时结合一般BP神经网络方法进行仿真实验和分析比较,结果表明:该方法具有全局寻优能力,预测精度高,绝对和相对误差较小,收敛速度快,能够有效针对供暖系统