Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algor

来源 :地学前缘(英文版) | 被引量 : 0次 | 上传用户:kyzy0082
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Compression index Cc is an essential parameter in geotechnical design for which the effectiveness of correlation is still a challenge.This paper suggests a novel modelling approach using machine learning(ML)technique.The performance of five commonly used machine learning(ML)algorithms, i.e.back-propagation neural network(BPNN), extreme learning machine(ELM), support vector machine(SVM), random forest(RF)and evolutionary polynomial regression(EPR)in predicting Cc is comprehensively investigated.A database with a total number of 311 datasets including three input variables, i.e.initial void ratio eo, liquid limit water content wL, plasticity index Ip, and one output variable Cc is first established.Genetic algorithm(GA)is used to optimize the hyper-parameters in five ML algorithms, and the average prediction error for the 10-fold cross-validation(CV)sets is set as the fitness function in the GA for enhancing the robustness of ML models.The results indicate that ML models outperform empirical prediction formulations with lower prediction error.RF yields the lowest error followed by BPNN, ELM, EPR and SVM.If the ranges of input variables in the database are large enough, BPNN and RF models are recommended to predict Cc.Furthermore, if the distribution of input variables is continuous, RF model is the best one.Otherwise, EPR model is recommended if the ranges of input variables are small.The predicted cor-relations between input and output variables using five ML models show great agreement with the physical explanation.
其他文献
虚拟现实是计算机平台对客观现实世界的可视化仿真,虚拟现实的关键在于虚拟环境场景的构建,而模型是虚拟现实环境建立的基础。本文对目前构造虚拟现实环境的建模方法进行了分析
国家经济的增长和科技水平的提升,为光伏电站的发展提供巨大的空间.目前,资源及能源相对匮乏,但是社会发展对资源的需求量日益增加,从而使新型清洁能源得到了更多的关注和重
This paper presents probabilistic assessment of seismically-induced slope displacements considering uncertainties of seismic ground motions and soil properties.