论文部分内容阅读
In aerospace industry, gears are the most common parts of a mechanical transmission system. Gear pitting faults could cause the transmission system to crash and give rise to safety dis-aster. It is always a challenging problem to diagnose the gear pitting condition directly through the raw signal of vibration. In this paper, a novel method named augmented deep sparse autoencoder (ADSAE) is proposed. The method can be used to diagnose the gear pitting fault with relatively few raw vibration signal data. This method is mainly based on the theory of pitting fault diagnosis and creatively combines with both data augmentation ideology and the deep sparse autoencoder algo-rithm for the fault diagnosis of gear wear. The effectiveness of the proposed method is validated by experiments of six types of gear pitting conditions. The results show that the ADSAE method can effectively increase the network generalization ability and robustness with very high accuracy. This method can effectively diagnose different gear pitting conditions and show the obvious trend according to the severity of gear wear faults. The results obtained by the ADSAE method proposed in this paper are compared with those obtained by other common deep leing methods. This paper provides an important insight into the field of gear fault diagnosis based on deep leing and has a potential practical application value.