论文部分内容阅读
高光谱图像具有高维度、带间相关性较高、样本数量较少等诸多问题,直接利用表示学习算法对高光谱图像进行分类会导致严重的维数灾难.对于高光谱图像,不是所有的光谱带都可用于特定的分类任务.因此,文中提出基于增强空谱特征网络的空间感知协同表示算法.依据高光谱图像内在的低维流形构建基于空谱特征的分层网络.利用训练的网络对高维数据进行特征提取,并利用空间感知协同表示算法进行分类.在两个高光谱数据集Indian Pines和Pavia University上的实验表明文中算法的有效性.