基于监督局部线性嵌入特征提取的高光谱图像分类

来源 :计算机应用 | 被引量 : 9次 | 上传用户:joeyifeng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高光谱图像的数据维数高、数据量大、数据间高度冗余等特点给图像分类带来困难,为进行有效降维、提高分类精度,提出了一种监督局部线性嵌入(SLLE)非线性流形学习特征提取方法。SLLE算法根据数据先验类标签信息所给出的新距离寻找数据点的k最近邻(NN),新距离使得类内距离小于类间距离,这使得SLLE算法更有利于分类。高光谱图像数据和UCI数据的分类结果表明了该方法的有效性。
其他文献