论文部分内容阅读
提出了一种基于多尺度分解的超光谱图像异常检测算法。在目标和背景均未知的前提下,利用光谱和空间两种信息完成对异常目标信号的定位,从而实现超光谱遥感数据中异常目标检测。首先利用非下采样塔式变换对超光谱图像进行分解,将其划分为不同尺度子块;然后依据超光谱图像同一波段不同尺度空间内相邻系数的相关性,采用不同波段各个尺度空间的反锐化掩模方法优化背景数据分布,从而抑制异常数据对背景的干扰;最后利用设计的核RX算子得到异常目标检测结果。为验证方法的有效性,利用真实和模拟的AVIRIS数据进行了实验,并与经典RX算