异质异构微系统集成可靠性技术综述

来源 :电子与封装 | 被引量 : 0次 | 上传用户:skyman9907
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着智能移动、智能汽车、物联网、可穿戴设备等市场的快速增长,兼具信号感知、信号处理、信令执行和赋能等多功能集成的微系统技术成为业界关注的焦点.在深度摩尔和超越摩尔的共同推动下,微系统技术正呈现出工艺节点不断缩小、集成密度不断提高、结构框架软硬一体、失效机制交叉融合、分析技术更新迭代等全新特征,新结构、新工艺的引入带来了新的可靠性问题,使得部分原有可靠性表征方法不再适用.针对基于异质异构集成微系统技术的可靠性问题,综述了国内外研究进展,提出了亟需解决的若干问题和表征方法,如热、力学可靠性问题,多尺度、多场耦合问题,微纳工艺、结构的性能表征和退化问题,微系统可靠性评价问题,电磁、辐照、极低温等特殊环境下的适应性问题.
其他文献
近年来,微系统技术作为延续摩尔定律的重要解决方案发展迅猛,各种新的设计理念、先进封装结构以及集成技术层出不穷,极大地提升了各类电子系统的功能与性能.宇航装备研制领域对微系统表现出了迫切需求,但是由于其微小型化,功能高度集成,大量采用新设计、新工艺以及新材料等特点,在可靠性要求较高的宇航领域应用将面临诸多技术挑战.从微系统设计开发方式、结构特点、封装集成方式、可靠性保证手段等角度分析了当前微系统技术的发展趋势,结合宇航应用要求,提出了后续微系统宇航应用的相关建议.
采用数值模拟技术结合实际锻造工艺,研究钢锭开坯过程空洞缺陷的闭合规律.研究结果表明:沿轴线分布的空洞直径为钢锭直径1桙30时,当镦粗压下量为50%时,除难变形区的空洞外,其他位置的空洞都可以闭合;当空洞直径不大于钢锭直径1桙20时,空洞尺寸对空洞闭合表征参数Q的临界值没有影响,其值为0.3;对于镦粗过程难变形区未闭合的空洞,在后续经过5道次拔长,完全可以闭合.该研究结果对钢锭开坯过程空洞缺陷压实具有一定的指导作用.
先进集成技术的发展以应用为驱动,近年来在智能应用、5G通信、物联网、卫星通信等领域得到了空前关注.然而,集成微系统中信号串扰、腔体效应、自热效应等导致的可靠性问题分布更加密集,跨层级多场耦合过程高效数值仿真是实现集成微系统高效能设计的技术保障.多场耦合仿真已成为跨学科领域研究的主流方向之一,正成为促进电子科学与技术、信息科学与技术等进步的重要手段.主要介绍了集成微系统多物理场耦合仿真中关于数理建模、数值求解以及大规模问题加速求解算法的发展现状及关键技术.
芯片持续减小的特征尺寸使得摩尔定律的发展愈发困难,微系统已然成为电子技术的重要方向之一.三维异质异构集成着重于解决系统级的集成互连,其聚焦量级为亚微米至10μm,并以较低的成本连通了从微纳连接到系统级集成的桥梁.微系统三维异质异构集成技术正在逐步向三维堆叠、多功能一体化、混合异构集成方向发展,这使得微系统具有集成度高、功耗小、微小型化、可靠性高等优点.对微系统三维异质异构集成的定位与发展形态、国内外研究现状、应用领域与应用前景等进行了综述.
3D异构集成技术是未来电子行业的关键技术,促使电子系统朝着高性能、低延迟、小尺寸、轻质量、低功耗和低成本的方向发展.然而,随着信号传输速率和带宽的提高,异构集成系统各层级之间的相互干扰愈发显著,亟需多层级的协同仿真技术来捕获这种干扰,从而避免多次迭代造成的经济和时间成本增加.多层级协同建模和仿真技术可实现跨芯片-封装-系统领域的多层级协同开发以及跨电学、热学、机械学的多物理场协同分析,是实现3D异构集成的重要保障.介绍了异构集成协同仿真的基本概念,详述了协同仿真关键技术的发展和研究现状,总结了协同仿真的挑
CMOS (Complementary Metal Oxide Semiconductor)图像传感器(CMOS Image Sensor, CIS)正向着高速、大像素和低成本的方向发展,近年来晶圆级封装技术由于其小型化、低成本的优点受到广泛关注。根据结构和应用领域的不同,详细介绍了基于硅通孔(Through Silicon Via, TSV)技术的多种CIS晶圆级封装技术,并介绍和分析不同技术的
采用PTA技术的在役溶解加氢反应器均出现了局部腐蚀现象,要求被腐蚀部位的耐蚀层增加C276堆焊层.基于该项技术的更新要求,对在制溶解反应器采用带极电渣堆焊E309L+E347+C276开展焊接工艺试验.试验结果表明:选定的焊接工艺参数和工艺方案合理可行.
根据16MND5钢材料性能要求,制定合理的锻造工艺.通过DEFORM模拟,证明了在此锻造工艺条件下操作能够改善锻件心部组织缺陷,生产出质量合格的16MND5钢锻件.
为实现35CrNi3MoV钢锻件屈服强度大于960 MPa且低温(-40℃)冲击吸收能量大于47 J的高强韧要求,通过数值模拟技术,对化学成分、锻后热处理工艺和性能热处理工艺进行了优化设计,并结合钢水纯净度的提升,实现了35CrNi3MoV钢锻件高强度、高韧性的设计和制造要求.
分析了各类大型航空锻件材料的特点,总结了大型航空锻件成形技术应用进展,并讨论了大型航空锻件成形技术的发展趋势.