论文部分内容阅读
Many problems in image representation and classification involve some form of dimensionality reduction. Non-negative matrix factorization (NMF) is a recently proposed unsupervised procedure for learning spatially localized, parts-based subspace representation of objects. An improvement of the classical NMF by combining with Log-Gabor wavelets to enhance its part-based learning ability is presented. The new method with principal component analysis (PCA) and locally linear embedding (LLE) proposed recently in Science are compared. Finally, the new method to several real world datasets and achieve good performance in representation and classification is applied.