论文部分内容阅读
A tunable magnetically insulated transmission line oscillator(MILO) is put forward and simulated. When the MILO is driven by a 430 k V, 40.6 k A electron beam, high-power microwave is generated with a peak output power of 3.0 GW and frequency of 1.51 GHz, and the relevant power conversion efficiency is 17.2%. The 3-d B tunable frequency range(the relative output power is above half of the peak output power) is 2.25–0.825 GHz when the outer radius of the slow-wave structure(SWS) vanes ranges from 77 mm to 155 mm, and the 3-d B tuning bandwidth is 92%, which is sufficient for the aim of large-scale tuning and high power output.
A tunable magnetically insulated transmission line oscillator (MILO) is put forward and simulated. When the MILO is driven by a 430 kV, 40.6 k A electron beam, high-power microwave is generated with a peak output power of 3.0 GW and frequency of 1.51 GHz, and the relevant power conversion efficiency is 17.2%. The 3-d B tunable frequency range (the relative output power is above half of the peak output power) is 2.25-0.825 GHz when the outer radius of the slow-wave structure (SWS) vanes ranges from 77 mm to 155 mm, and the 3-d B tuning bandwidth is 92%, which is sufficient for the aim of large-scale tuning and high power output.